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STEADY-STATE TEMPERATURE DISTRIBUTION IN AN
INHOMOGENEOUS MEDIUM WITH LOCAL INCLUSIONS

Yu. I. Malov and L. K. Martinson UDC 536.24
We present a modification of the method of image regions [G. I. Marchuk, Methods of Nﬁmeri—
cal Mathematics, Springer-Verlag [1975)]to solve the boundary-value problem for the steady-
state temperature distribution in an irregular multiply connected region.
We consider the boundary-value problem for the temperature distribution u(x) in the multiply connected
N
region G =T\ U o, (Fig. 1), where I ={(x, x,): 0 =x, =L, 0 s x, = I}, and wg is a region which corres-

s=1

ponds to a local inclusion. At the boundary of the inclusion, the heat flux is zero:

div [H (x) grad u (x)] = — [ (x), x = (xy, %) €QG, )
om0, — | 0 (s=1,2 ..., M)
on y,

Here H(x) > 0 is the heat-conduction coefficient of the inhomogeneous medium; f(x) > 0, volume density of the

heat sources; I', boundary of the rectangular region il; y4, boundary of the local inclusion wg; and n, normal
to the contour vy g.

We shall present a method which makes it possible to find a rigorous solution of problem (1) for any

shape and number of local inclusions wg. Together with (1) we shall formulate an auxiliary problem in the
rectangular region II:

2 ’ @)
AN 0 {n(x; £) jﬁ,]thf(x)? xc,
i Oxp, 0%y, |
ol =0, (3)
where 7n(x; €) and F(x) are piecewise-smooth functions which are defined as follows:
N (x: 8):{H(x), x€q, Fey— |F0) x€G,
e=const =0, xCII\ G, |0, xeII\G.
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Since (2) is an equation of the divergence type, and has piecewise-smooth coefficients, the Dirichlet
problem (2), (3) has a unique continuous solution {2, 3] which satisfies the H6lder conditions with respect to
the variables x,,,. At the lines of discontinuity of function 7 (x; €), the derivatives 8v8/8xm have a first order
discontinuity so that the following connection formulas hold:

S

(H 0t )+: (9 0
e on

on
where the subscripts + and — denote the corresponding values of the functions at the different sides of the con-
tours yg. It is clear that for € = 0 these conditions take the form

00,

= (.
on

Vs

Therefore, the solution of the original boundary-value problem (1) is obtained by restricting the solution v;(x)
of the problem (2), (3) which is continuous in the region Il to the region G for € = 0.

~The auxiliary problem will be solved by reduction to an infinite system of linear algebraic equations [4].
Let us consider in the rectangle 1l the following orthogonal systems of functions:

k . 2
th(x):_]—/g]j sin —nzx—i— sin —rij-;—x_—“-,
YiD () — ]/2'[1 cos kzxi sin mzxz ,
ViR (x) = ]_/EL:Z sin LILE& o8 mfxg )
Zin (x)=?2ﬁ cos k;[x’ cos n?X"’

Noting that the function Ve( x) vanishes at the contour I', we shall seek the solution of Eq. (2) which be-
longs to the space C, a(II ﬂW L(ITy [3] in the form of the following double trigonometric series:

Ue (x) = }: (2517 (8) KXun (X) )
1

k,n=

Since the function vg(x) belongs in the region Il to the Hdlder class Cy ,, itfollows [5]that the seriesonthe
right-hand side of Eq. (4) tends to v¢(x) uniformly. In addition, noting that the function v¢(x) is positive which

follows from the physical formulation of the problem with f(x) > 0, and using the generalized mean value the-
orem, we obtain

~

13Xy

3
. hnx " .
Qun = —== Sv sin — L dx, \ Ve (xy, %) sin dx, =
b §

L
= sin rmx2 S‘w x,) sin M i, O<x,<l).
5

Since the function

1
w(xy) = f e (X1, Xy) dity
b

is continuous in the interval [0, L], and vanishes at its ends, the following relation holds:
J— 1 k_+
App = ——EZ— s 0.
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Analogously, we obtain

1

n

ahn:O( \),n'—-»oo.

Consequently, we have the following estimate for the coefficients ay of expansion (4);

@] <5 ——g——, C = const >0.

k21 2

We shall now determine the values of these coefficients. Substituting the assumed form of solution (4) into
Eq. (2), we obtain

(5)

2
m==1

[n (v; €) 2 &M ay, () Yin (x)] =—F(y),

k,n=1
where

alm — kr/L, if m=1,
hn anll, i m=2.

We now define the function

(m)(Y? 8) _,n .X 8) Z a(m)a (8) (i?I) (X) (6)

i,j=1

and, noting that the functions F(x) and é(m)(x; g) belong to the space I,(ll), we can expand these functions in
a double trigonometric series in the rectangle II:

F(x) = 2 GunXnn (X), (7)
k,n=1
D (x; &) = ,?:io M otn () YR (x). .
Here,
?\’ém):{}\fk, if :1, Ty — 1/2, if k=0,
' Ay, if =2, 1, if k=%£0.

Using the expansions (7) and (8), we obtain from Eq. (5)
2
> am cpm (€)= gqun (b, n=1,2, ... (9)

We note that the expansion coefficients of an arbitrary function g(x) € L,(II) in a double trigonometric ’
Fourler ser1es of orthogonal functions X, (x), gll)(x), Zy, (%) are, respectively, the scalar products (g, Xy,
(g, Ykn ) €, Zkn) in the space Ly(il).

Using (6), we find for the Fourier coefficients qol(gél)(e)

ok (&)= (@™ (x5 o), Vi () = ([ 0™ (x5 &) Vi () dx =
(1)
1 Wl m m V —
VI > ol a, @) {0, Zu-t, a) + (1" (0 Zos, o) F (= D" 0 Zogi ) F 0 Ziti, ng )

N ij=l1

Denoting the Fourier coefficients of the functions 5(x; &) ¢ Ly(Il) in the expansion in a double trigonome-
tric series interms of the functions Zy,(x) which are orthogonal in Il by okn(€) and noting that oy, (€) = (1, Zip), ex-
pression (10) for (pl(gr?)(s) can be written in the form

o

oL (2) — 2]/Z7 alma, (@ {0, ; ;) + (D0, @+ (0" 0, , @+, @ (1

ij=!
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Fig. 1. Multiply connected region with local inclusions.

Fig. 2. Temperature field in a multiply connected region with local inclusions.

Using (11), we can now write relations (9) in the form

2 Dkﬂifaij (8) = {pn (k’ n= 1: 25 .. ~)7

i) i=1

where

ki_nj

L? I8

Dipij =

+ nj ) (04 nj®) = Cpri nyy (&) — ( ) (AP R AN n—j(a)]} .

n? (’ ki
2V'Li {\ L* 2

We shall number consecutively the elements of the infinite matrix (akn) in such a way that each pair of
indices k and n corresponds to a number p according to the rule

1 (13)
i =" (k+nmy(k+n—1)—n—1.
Analogously,
Voo . 14
ve o D =D i L. 14)
According to the rules (13) and (14), we put
gu (8) = lpp (8>7 Tu = Gpn » Suv = ka'j
and write relations (12) in the form
(15)

Evsuvgv(s) =Ty (M =i, 2, . )
v=1

We note that the matrix elements 5, at the principal diagonal exceed in absolute value the remaining
matrix elements. Equation (15) can therefore be transformed into the following system of algebraic equations

of the second kind:
Eu(g) + 2 qugv(a) =T, (“’ =1, 2» .. -),
v=1

v (16)
Sy T
qu = v;u‘ > ru = Wuu , Wo= Suu .

Clearly, the correspondence (k, n) —p defined by (13) is one to one in the region of whole numbers, and for
eachu =1, 2,... one can find the indices k and n from the formula
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k:u——;— E(H)[E(H)‘—I],n:—;"E(H)[E(H)+1]—H+L 17)

where E(u) is the whole part of the real number 1/2 + v2u. The following estimates hold:
E=0(u!?), n=0W"?), n— co.
Then, using the estimate

Cc

k+n

|0 ()] << , € = const,

for the Fourier coefficients of piecewise~-smooth function 7(x;¢) which is nonnegative in the region il, one can
show analogously to [6, 7] that the reduction method [8] is applicable for the approximate solution of the infi-
nite system (16). Having determined the number sequence {gﬂ(e)}‘;f:1 from the infinite system (16), the two-
dimensional sequence {akn}ig, n=1 can then be constructed using the correspondences (17).

It should be noted that the coelfficients Q ,,, of the unknowns £;,(¢) in the equations of the infinite system
(16) depend on the parameter & which enters explicitly only in values of theFourier coefficients oy, () of the
function 7 (x; €), and

Oun (@) = ([ H) Zn () dx b2 [ Zyo () dx.
(@) (II\G)
Therefore, if we put € = 0 in the solution of the infinite system (16}, then the function

vy (%) =
P

[25:39 (0) an (X)
I

i Rk

gives a rigorous solution of the original boundary-value problem (1) in the multiply connected region G.

Figure 2 shows the example of a numerical calculation of the temperature field induced by a local point
heat source when f(x) = Ad(x;— L/2, x,— I/2), and for ' the following parameters of the problem: I.=1, / =1,
H =1, A =36. The rectangular local inclusions are shaded. The steady-state temperature distribution is
shown in the form of isothermal lines.

In conclusion, we note that the numerical calculation using the above scheme uses only the standard pro-
cedures for the calculation of Fourier coefficients and the solution of a linear algebraic system of equations.
The suggested method for the solution of the boundary value problem (1) is therefore sufficiently effective and
simple for engineering calculations.
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